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Crystallization kinetics and self-induced pinning in cellular patterns
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Within the framework of the Swift-Hohenberg model it is shown numerically and analytically that the front
propagation between cellular and uniform states is determined by periodic nucleation events triggered by the
explosive growth of the localized zero-eigenvalue mode of the corresponding linear problem. We derive an
evolution equation for this mode using asymptotic analysis, and evaluate the time interval between nucleation
events, and hence the front speed. In the presence of noise, we find the velocity exponent of ‘‘thermally
activated’’ front propagation~creep! beyond the pinning threshold.
@S1063-651X~00!50407-3#

PACS number~s!: 47.54.1r, 05.70.Ln, 82.20.Mj, 82.40.Ck
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Understanding the dynamics of localized structures in c
lular patterns, such as dislocations, grain boundaries,
other defects, is a long-standing problem of pattern form
tion @1#. An important aspect of this problem is the propag
tion of a patterned state into a uniform state. This is a c
sical front propagation problem complicated by the fact t
the patterned state provides potential barriers for the fr
and close to the threshold leads toself-inducedfront pinning
or stick-slip front motion. Near the threshold of a patter
forming instability these effects can be studied within t
framework of the generic Swift-Hohenberg~SH! model @1#.
Despite relative simplicity of this model, and a serious lim
tation related to the fact that it is of the gradient type, it giv
rise to a remarkably large variety of solutions. The SH eq
tion has been intensively studied in the past as a parad
for pattern formation in large aspect ratio systems@1,2#.
More recent computations brought attention to the propa
tion of fronts between uniform stationary states of this eq
tion and coarsening@3#. The computations have also demo
strated formation of stationary solitons, i.e., stable localiz
objects in the form of a domain of one phase sandwic
inside another phase@3#. The interest was supported by a
plications of the SH model to marginally unstable optic
parametric oscillators@4,5#. The SH model has also served
a convenient testing tool for the problem of pattern propa
tion into an unstable trivial state@6,7#. In this Rapid Com-
munication we elucidate another aspect of pattern forma
in nonequilibrium media that can be modeled by the
equation: self-induced pinning and stick-and-slip motion
the interphase boundary, which can be thought of as a
ticular kind of crystallization or melting.

We write the basic equation in the form

ut52~11¹2!2u1eu2u3. ~1!

At e.0 the trivial stateu50 undergoes a supercritical st
tionary bifurcation leading to a small-amplitude pattern w
unit wave numberk. The band of unstable wave numbe
widens with growinge, until it reaches the limiting valuek
50, which signals the appearance of a pair of nontriv
PRE 621063-651X/2000/62~1!/5~4!/$15.00
l-
nd
-

-
s-
t
t,

-

s
-
m

a-
-

d
d

l

-

n

f
r-

l

uniform states,u56Ae21. The two symmetric states ar
stable to infinitesimal perturbations ate. 3

2 . At still higher
values ofe, a variety of metastable states become possi
~1! a kink separating the two symmetric nontrivial unifor
states@Fig. 1~a!#; ~2! a semi-infinite pattern, coexisting with
either of the two nontrivial uniform states;~3! a finite pat-
terned inclusion, sandwiched, either symmetrically or an
symmetrically, between semi-infinite domains occupied
nontrivial uniform states@8#; ~4! an isolated solution@Fig.
1~b!#.

The energy of the uniform state is higher than that of
regular pattern with the optimal wave number ate,6.287
@11#. In spite of the difference between the energies of
uniform and patterned state, the interface between them
mains immobile at moderate and large valuese, and a mul-
tiplicity of localized states is linearly stable. The patte
propagation into a metastable uniform state or the reve
‘‘melting’’ process ate@1 is impeded by theself-induced
pinning attributed to the oscillatory character of th

FIG. 1. Stationary solutions to Eq.~1! for e51.78. ~a! kink
solution connectingu56Ae21; ~b! 1D localized solution~solid
line! and radially symmetric solution to Eq.~1! ~dashed line!.
R5 ©2000 The American Physical Society
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asymptotic perturbations of the uniform state, characteri
by the complex wave numberk25216 iA2e23. As e de-
creases, the stationary localized solutions lose stability
give rise to propagating solutions.

We shall show below that the front propagation proc
can be described in terms of periodic nucleation events t
gered by an explosive growth of the localized ze
eigenvalue mode of the corresponding linear problem. Us
asymptotic analysis, we shall derive the evolution equat
for this mode which allows us to estimate the time inter
between the nucleation events and hence the front speed
shall also study ‘‘thermally activated’’ front propagatio
~creep! at e.ec and derive the creep velocity exponent.

We studied numerically Eq.~1! in one spatial dimension
for various initial cluster sizes from a single ‘‘roll’’ to a
semi-infinite roll pattern. As an initial condition we chose
section of a sine waveu5(21)Nu0 cosx havingN maxima
within 2Np,x,Np, surrounded by a uniform stateu
5u0, where u052(e21)1/2. At large e'1.8, this initial
state quickly transforms into a stationary cluster ofN
‘‘rolls.’’ Then we slowly decreasede to detect a transition
from static to expanding cluster. The depinning transition
the single soliton occurs ate'1.74. AsN increases, the de
pinning threshold increases, rapidly converging to the lim
ing value e5ec'1.7574 . . . for the semi-infinite pattern.
Figure 2 illustrates expansion of a large cellular cluster int
uniform stable state ate51.757. The front propagation take
the form of well separated in time periodic nucleation eve
of new ‘‘atoms’’ of the ‘‘crystalline’’ state at the front. Be
tween successive nucleation events, the solution rem
close to the stationary semi-infinite pattern found atec . This
process resembles crystallization in equilibrium solids, w
the important distinction that the new ‘‘atoms’’ are creat
directly from the metastable ‘‘vacuum’’ state. The time b
tween consecutive nucleation events diverges ase ap-
proaches the pinning threshold@9#. Figure 3 presents the av
erage front speed as a function ofe2ec . This function can
be fitted byV5V0Aec2e, with V052.292.

Near the critical valuee5ec front dynamics can be ana
lyzed within the framework of the perturbation theory. A
udu!1, we can present the front solution as

u~x,t !5U0~x!1udu1/2u1~x,t !,

where U0(x) is the stationary front solution atd50 and
udu1/2u1(x,t) is a small correction. This solution is uniforml

FIG. 2. Space-time plot of the large (N529) cellular cluster
expansion into the stable uniform phase ate51.757~only the right
half of the cluster is shown!.
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valid at small positived; it is also valid during quasistation
ary phases~away from nucleation events! for small negative
d. Plugging this ansatz in Eq.~1!, we obtain

] tu15L@U0#u12udu1/2@3U0u1
22sgn~d!U0#1 . . . , ~2!

whereL@U0#[ec23U0
22(11¹2)2 is the linearized SH op-

erator atec . In the lowest order ind, Eq.~2! yields the linear
equation] tu15L@U0#u1. This equation is always satisfie
by the stationary translational modeU08(x). In addition, the
linearized operatorL@U0# has a localized neutral eigenmod
U1 which we found numerically; see Fig. 4. Since all oth
eigenmodes have negative eigenvalues, the evolution of
system close to the bifurcation point can be reduced
single-mode dynamics@12#, u1(x,t)5a(t)U1(x), where
a(t) is the amplitude of the zero mode.

FIG. 3. Average front speed as a function of the control para
eter e near the critical pointec51.7574 . . . . Points represent nu
merics, the dashed line is the best fitV52.29(ec2e)1/2, and the
dotted-dashed line is the theoretical predictionV51.80(ec2e)1/2.

FIG. 4. Stationary structureU0(x) ~solid line! and the corre-
sponding localized zero modeU1(x) ~dashed line! at e5ec . Inset:
eigenvalues of the stable and unstable localized modes of the
tionary front solutions ate.ec .
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At d5e2ec.0, the immobile front solutionu0(x,e) is
linearly stable. Numerical stability analysis@10# shows that
the negative eigenvaluels of the localized modeu1(x,e)
approaches zero asd1/2. In addition, there is also an unstab
front solution and a corresponding mode with positive eig
valuelu which also approaches zero asd1/2. At the pinning
threshold, these two solutions collide and disappear vi
saddle-node bifurcation. In the inset of Fig. 4, we show
stable and unstable eigenvaluesls,u as functions ofe. At e
,ec , the front solution becomes nonstationary. Nonethele
at udu!1, the solution remains close to the stationary fro
solution U0(x) all the time except short intervals when
new roll nucleates.

Close to the bifurcation threshold] tu15ȧU1 can be
treated as perturbation. Therefore, in the second order
derive

L@U0#u25ȧU11udu1/2@3a2U0U1
22sgn~d!U0#. ~3!

Equation~3! has a bounded solution if its rhs is orthogonal
the zero modeU1 of the operatorL. This results in the solv-
ability condition for the amplitudea:

a ȧ5udu1/2@sgn~d!b2ga2#, ~4!

where

a5E
2`

`

U1
2dx, b5E

2`

`

U1U0dx, g53E
2`

`

U1
3U0dx.

At d.0, a(t) reaches the stationary amplitudea0
5(b/g)1/2. This value corresponds to the difference betwe
the stable front solutions ate and ec . At small negatived,
Eq. ~4! describesexplosivegrowth of a, which passes from
2` to ` in a finite timete5pa/(udubg)1/2. This explosion
time gives an upper bound for the period between the nu
ation events, after which the whole process repeats. The f
speed is found asV5L/te , whereL is the asymptotic spa
tial period of the pattern selected by the process of roll nu
ation, andte is the time interval between nucleation even
Our calculations give the valueV51.8udu1/2. This scaling is
in a good qualitative agreement with the results of the
merical simulations; see Fig. 3. However, the prefactor 1.
noticeably lower~about 25%! than the corresponding valu
V052.29 obtained by numerical simulation of Eq.~1!.

Let us discuss a possible reason for the discrepancy.
numerical simulations show that the nucleation events p
duce slowly decaying distortions behind the moving fro
These distortions may effectively ‘‘provoke’’ a conseque
nucleation event by creating an initial perturbation of t
zero modeU1(x). It will lead to an increase of the fron
velocity. Although we have evidence for the importance
this effect, a systematic treatment of this process is v
complicated and goes beyond perturbation theory.

Effect of noise. Let us consider the effect of weak additiv
noiseh(x,t) in the rhs of Eq.~1!. For simplicity we assume
that h is delta-correlated with the intensity~temperature! T:

^h~x,t !h~x8,t8!&5Td~x2x8!d~ t2t8!.

In the presence of noise, there is no sharp threshold for
onset of motion ate,ec . Instead, thermally activated mo
-
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tion ~creep! occurs ate.ec ~see Fig. 5!. In this case the
average creep velocity is determined by the noise intens
For e,ec the noise will slightly increase the speed of th
front. In contrast to the deterministic motion, the interva
between consecutive nucleation events are random.

In order to estimate the effect of the noise atd.0, we
will treat h as a small perturbation. In this analysis, we sh
not introduce scaling explicitly, since the scaling of noi
that is balanced with deterministic perturbations cannot
determineda priori. Following the lines of the above analy
sis, we project noise onto the zero mode to obtain the s
ability condition

a ȧ5d1/2~b2ga2!1d21/2h̃~ t !, ~5!

where h̃(t)5*2`
` h(x,t)U1(x)dx. For T50, Eq. ~5! has a

stable fixed pointas5Ab/g and an unstable oneau5
2Ab/g. At a,au , one has explosive growth of the solutio
to Eq.~5!, while a→as at a.au . Thus, we have to estimat
the probabilityP for the amplitude of the zero modea to be
smaller thanau . This quantity can be derived from the co
responding Fokker-Planck equation for the probability de
sity p(a,t) @13#:

pt52
d1/2

a

]

]a
@~b2ga2!p#1

T

2ad
]a

2p, ~6!

where we used̂ h̃2&5aT. This is the standard Kramer
problem. The stationary probabilityp(a) is given by

p;expF2d3/2~ba2ga3/3!

T G . ~7!

The probabilityP is given by the integralP5*
2`
au p(x)dx.

For T!d3/2, we can use the saddle-point method, whi
gives the following result:

P~a,au!;expF2
4d3/2b3/2

3g1/2T
G

5expF2
0.57d3/2

T G . ~8!

FIG. 5. Space-time plot of the switching wave propagation tr
gered by white noise with the temperatureT50.000 42 at
e51.758.ec .
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Since the time between the nucleation eventstn;1/P, we
find that the velocity of the front in the stable region is giv
by v;1/tn;exp@20.57d3/2/T#.

At very largee.e056.287, the flat stateu56Ae21 has
lower energy than the periodic state. Nevertheless, the
form state does invade the periodic state at anye because of
the strong self-induced pinning. With large-amplitude no
there will be some probability for the flat state to propag
towards the periodic state by thermally activated annihilat
events at the edge of the periodic pattern; however, for la
e the probability of annihilation at the edge is of the sam
order as that in the bulk of the patterned state. Thus, for v
large e and largeT we may expect melting of the periodi
structure both on the edge and in the bulk.

The above results can be trivially extended to regular tw
dimensional periodic structures~rolls! selected by the SH
equation@1#. More interesting is the behavior of a 2D he
agonal lattice which exists near near the bifurcation of n
trivial uniform solutions ate5 3

2 @14#. We anticipate that
propagation of the hexagonal structure into the uniform s
will exhibit the same features of stick-and-slip motion
described above, and can be studied by similar methods
the SH equation~1! at e. 3

2 , hexagonal lattices coexist wit
roll patterns which have lower energy, so the front propa
H
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tion may in fact give rise to rolls. However, hexagons m
become dominant in the modified SH equation with an ad
quadratic nonlinearity neare50, where the robust ‘‘crystal-
lization’’ of the hexagonal lattice is expected. The work o
this subject is now in progress.

Finally, we want to emphasize that although our resu
are obtained in the framework of the Swift-Hohenbe
model, they can be applicable in a more broad context
pattern propagation into a uniform state. In particular,
recently observed and are currently studying the stick-
motion of the interface between cellular and uniform sta
in experiments with thin vibrated layer of granular mater
@15#.
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