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| it is shown numerically and analytically that the front

propagation between cellular and uniform states is determined by periodic nucleation events triggered by the
explosive growth of the localized zero-eigenvalue mode of the corresponding linear problem. We derive an
evolution equation for this mode using asymptotic analysis, and evaluate the time interval between nucleation
events, and hence the front speed. In the presence of noise, we find the velocity exponent of “thermally

activated” front propagatioricreep beyond the pinning
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PACS numbeps): 47.54+r, 05.70.Ln, 82.20.Mj, 82.40.

threshold.
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Understanding the dynamics of localized structures in celuniform statesu==+e—1. The two symmetric states are
lular patterns, such as dislocations, grain boundaries, anstable to infinitesimal perturbations at-3. At still higher
other defects, is a long-standing problem of pattern formavalues ofe, a variety of metastable states become possible:

tion [1]. An important aspect of this problem is the propaga-(

1) a kink separating the two symmetric nontrivial uniform

ti_on of a patterned state into a uniforrr_l state. This is a classtategFig. 1(a)]; (2) a semi-infinite pattern, coexisting with
sical front propagation problem complicated by the fact thateither of the two nontrivial uniform state$3) a finite pat-
the patterned state provides potential barriers for the fronterned inclusion, sandwiched, either symmetrically or anti-

and close to the threshold leadsstlf-inducedront pinning

symmetrically, between semi-infinite domains occupied by

or stick-slip front motion. Near the threshold of a pattern-nontrivial uniform stateg8]; (4) an isolated solutioriFig.
forming instability these effects can be studied within thel(b)].

framework of the generic Swift-Hohenbe(§H) model[1].
Despite relative simplicity of this model, and a serious limi- r
tation related to the fact that it is of the gradient type, it gives]

The energy of the uniform state is higher than that of the
egular pattern with the optimal wave numbereat 6.287
11]. In spite of the difference between the energies of the

r_ise toa remarl_<ab|y I_arge varie_ty o_f solutions. The SH equauniform and patterned state, the interface between them re-
tion has been intensively studied in the past as a paradigmmains immobile at moderate and large valeesnd a mul-

for pattern formation in large aspect ratio systefis?].

tiplicity of localized states is linearly stable. The pattern

More recent computations brought attention to the propagapropagation into a metastable uniform state or the reverse
tion of fronts between uniform stationary states of this equa“melting” process ate>1 is impeded by theself-induced
tion and coarsening]. The computations have also demon- pinning attributed to the oscillatory character of the

strated formation of stationary solitons, i.e., stable localized
objects in the form of a domain of one phase sandwiched
inside another phade]. The interest was supported by ap-
plications of the SH model to marginally unstable optical
parametric oscillatorg4,5]. The SH model has also served as
a convenient testing tool for the problem of pattern propaga-
tion into an unstable trivial state,7]. In this Rapid Com-

munication we elucidate another aspect of pattern formation

in nonequilibrium media that can be modeled by the SH

equation: self-induced pinning and stick-and-slip motion of

the interphase boundary, which can be thought of as a par
ticular kind of crystallization or melting.

We write the basic equation in the form
ui=—(1+V?)2u+eu—us. )

At €>0 the trivial stateu=0 undergoes a supercritical sta-

tionary bifurcation leading to a small-amplitude pattern with

unit wave numberk. The band of unstable wave numbers
widens with growinge, until it reaches the limiting valuk

2

X

FIG. 1. Stationary solutions to Edl) for €e=1.78. (a) kink

solution connectingi=*/e—1; (b) 1D localized solution(solid

=0, which signals the appearance of a pair of nontrivialline) and radially symmetric solution to E¢l) (dashed ling
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FIG. 2. Space-time plot of the largedNE& 29) cellular cluster
expansion into the stable uniform phasesatl.757 (only the right
half of the cluster is shown 107

107

asymptotic perturbations of the uniform state, characterized
by the complex wave numbér=—1+i\2e—3. As € de- FIG. 3. Average front speed as a function of the control param-
creases, the stationary localized solutions lose stability anefter e near the critical poink,=1.757% . ... Points represent nu-
give rise to propagating solutions. merics, the dashed line is the bestVit2.29(e.— €)¥? and the
We shall show below that the front propagation procesglotted-dashed line is the theoretical prediction 1.80(e.— €)'
can be described in terms of periodic nucleation events trig-
gered by an explosive growth of the localized zero-valid at small positives; it is also valid during quasistation-
eigenvalue mode of the corresponding linear problem. Usingry phasesaway from nucleation eventfor small negative
asymptotic analysis, we shall derive the evolution equationd. Plugging this ansatz in E¢l), we obtain
for this mode which allows us to estimate the time interval
between the nucleation events and hence the front spee_d. We  gu=L[Uqlu;—|4| 1’2[3U0u§—sgr( HUol+ ..., 2
shall also study “thermally activated” front propagation
(creep at e> €. and derive the creep velocity exponent.
We studied numerically Eq1) in one spatial dimension
for various initial cluster sizes from a single “roll” to a
semi-infinite roll pattern. As an initial condition we chose a
section of a sine wave=(— 1)Nuy cosx havingN maxima
within —N7<x<Nsr, surrounded by a uniform state
=u,, whereuy=—(e—1)"2 At large e~1.8, this initial
state quickly transforms into a stationary cluster MNf
“rolls.” Then we slowly decreased to detect a transition
from static to expanding cluster. The depinning transition fo
the single soliton occurs at~1.74. AsN increases, the de-
pinning threshold increases, rapidly converging to the limit-
ing value e=e.~1.754 ... for the semi-infinite pattern.
Figure 2 illustrates expansion of a large cellular cluster into a
uniform stable state at=1.757. The front propagation takes
the form of well separated in time periodic nucleation events
of new “atoms” of the “crystalline” state at the front. Be-
tween successive nucleation events, the solution remains
close to the stationary semi-infinite pattern foundat This
process resembles crystallization in equilibrium solids, with =
the important distinction that the new “atoms” are created =
directly from the metastable “vacuum” state. The time be-
tween consecutive nucleation events diverges eagp-
proaches the pinning threshdlé]. Figure 3 presents the av-
erage front speed as a function ©f .. This function can
be fitted byV=Vye.— €, with V;=2.292.
Near the critical value= ¢, front dynamics can be ana-
lyzed within the framework of the perturbation theory. At -2 : . . : ‘ . .

. 0 10 20 30 40 50 60 70 80
|8|<1, we can present the front solution as A

whereL[Ug]=e.—3UZ—(1+V?)? s the linearized SH op-
erator ate; . In the lowest order i, Eq.(2) yields the linear
equationd;u;=L[Uy]u;. This equation is always satisfied
by the stationary translational mod#,(x). In addition, the
linearized operatok[Ugy] has a localized neutral eigenmode
U, which we found numerically; see Fig. 4. Since all other
eigenmodes have negative eigenvalues, the evolution of the
system close to the bifurcation point can be reduced to
rsingle-mode dynamicq12], uq(x,t)=a(t)U.(x), where

a(t) is the amplitude of the zero mode.

u(x,t)=Uo(x)+]| 8| Yy (x,1), FIG. 4. Stationary structur&y(x) (solid line) and the corre-
sponding localized zero modg;(x) (dashed lingat e=¢.. Inset:
where Uy(x) is the stationary front solution a=0 and eigenvalues of the stable and unstable localized modes of the sta-
| 5]2u,(x,t) is a small correction. This solution is uniformly tionary front solutions at> e .
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At 6=€—€.>0, the immobile front solutionuy(x,€) is 0 50
linearly stable. Numerical stability analydi0] shows that Or
the negative eigenvalugg of the localized modeu;(X,e)
approaches zero a&’2 In addition, there is also an unstable
front solution and a corresponding mode with positive eigen-
value\,, which also approaches zero %2 At the pinning 5001
threshold, these two solutions collide and disappear via a
saddle-node bifurcation. In the inset of Fig. 4, we show the
stable and unstable eigenvalues, as functions ofe. At €
<€, the front solution becomes nonstationary. Nonetheless, 100l
at |8|<1, the solution remains close to the stationary front !

solution Uo(x) all the time except short intervals when a kG, 5. Space-time plot of the switching wave propagation trig-
new roll nucleates. _ gered by white noise with the temperatui®=0.00042 at
Close to the bifurcation threshold,u;=aU; can be e=1758>¢.
treated as perturbation. Therefore, in the second order we
derive tion (creep occurs ate>e. (see Fig. 5. In this case the
, average creep velocity is determined by the noise intensity.
L[UoJu,=aU;+[8/*43a2UoUs—sgnd)Us]l.  (3)  For e<e, the noise will slightly increase the speed of the
i . , front. In contrast to the deterministic motion, the intervals
Equation(3) has a bounded solution if its rhs is orthogonal to panveen consecutive nucleation events are random.

the zero mod&J,; of the operatoL. This results in the solv- In order to estimate the effect of the noise&t0. we

ability condition for the amplitude: will treat » as a small perturbation. In this analysis, we shall
a1 2 not introduce scaling explicitly, since the scaling of noise
aa=[5["qsgr(6) B - ya’l, ) that is balanced with deterministic perturbations cannot be
determineda priori. Following the lines of the above analy-
sis, we project noise onto the zero mode to obtain the solv-
ability condition

where

a=J U2dx, /3=f U,Uqdx, y=3J U3Udx.

aa=8"Ap—ya)+ 5 Vi), (5)
At 51720, a(t) reaches the stationary amplitucde,
=(B/vy)*'%. This value corresponds to the difference between ~ -
the stable front solutions at and e,. At small negatives, ~ Where 7(t)=JZ.n(x,)Us(x)dx. For T=0, Eq. (5) has a
Eq. (4) describesexplosivegrowth of a, which passes from Stable fixed pointas= VBly and an unstable one,=
— o to o in a finite ime7,= 7a/(| 8| By) Y2 This explosion  ~ \/W At a<ay, one has explosive growth of the sqlutlon
time gives an upper bound for the period between the nucld® Ed.(5), while a—as ata>a, . Thus, we have to estimate
ation events, after which the whole process repeats. The frof€ probabilityP for the amplitude of the zero modeto be
speed is found a¥=A/7,, whereA is the asymptotic spa- Smaller Fharau. This quantity can be derived from t.h_e cor-
tial period of the pattern selected by the process of roll nuclet€sponding Fokker-Planck equation for the probability den-
ation, andr, is the time interval between nucleation events.Sity p(a,t) [13]:
Our calculations give the valué= 1.8 5/Y2. This scaling is
in a good qualitative agreement with the results of the nu- ) T,
merical simulations; see Fig. 3. However, the prefactor 1.8 is Pe=—— Zal(B—ra’)pl+ 5—=dap, C)
noticeably lower(about 25% than the corresponding value
V(=2.29 obtained by numerical simulation of E@). ~ .
Let us discuss a possible reason for the discrepancy. olfhere we useds”)=aT. This is the standard Kramers
numerical simulations show that the nucleation events proProblem. The stationary probabilify(a) is given by
duce slowly decaying distortions behind the moving front.
These distortions may effectively “provoke” a consequent 25%%(pa—ya®l3)
nucleation event by creating an initial perturbation of the p~ex T
zero modeU;(x). It will lead to an increase of the front
velocity. Although we have evidence for the importance of . L . _ay
this effect, a systematic treatment of this process is ver he proba}?htyp is given by the |ntegral.3—f7mp(x)dx. )
complicated and goes beyond perturbation theory. or T<46%2 we can use the saddle-point method, which
Effect of noiseLet us consider the effect of weak additive 9ives the following result:
noise n(x,t) in the rhs of Eq(1). For simplicity we assume
that 7 is delta-correlated with the intensiffemperaturgT:

1/2

. (7)

4532 ,83’2]

P(a< au)~ex;{ - &}/TZT

(n(x) (X 1) =TS(x=x") (t—t").

. . /
In the presence of noise, there is no sharp threshold for the —exd — 0.575% ®
onset of motion ak<e.. Instead, thermally activated mo- T |
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Since the time between the nucleation evens 1/P, we  tion may in fact give rise to rolls. However, hexagons may
find that the velocity of the front in the stable region is givenbecome dominant in the modified SH equation with an added
by v~ 1/7,~exd —0.575%4T]. quadratic nonlinearity near=0, where the robust “crystal-

At very largee> €,=6.287, the flat stata= + \/e— 1 has lization” of the hexagonal lattice is expected. The work on
lower energy than the periodic state. Nevertheless, the unthis subject is now in progress.
form state does invade the periodic state at amgcause of Finally, we want to emphasize that although our results
the strong self-induced pinning. With large-amplitude noiseare obtained in the framework of the Swift-Hohenberg
there will be some probability for the flat state to propagatemodel, they can be applicable in a more broad context of
towards the periodic state by thermally activated annihilatiorpattern propagation into a uniform state. In particular, we
events at the edge of the periodic pattern; however, for largeecently observed and are currently studying the stick-slip
e the probability of annihilation at the edge is of the samemotion of the interface between cellular and uniform states
order as that in the bulk of the patterned state. Thus, for verin experiments with thin vibrated layer of granular material
large e and largeT we may expect melting of the periodic [15].
structure both on the edge and in the bulk.

The above results can be trivially extended to regular two- The authors thank the Max-Planck-Institutr féthysik
dimensional periodic structuresolls) selected by the SH komplexer Systeme, Dresden, Germany for hospitality dur-
equation[1]. More interesting is the behavior of a 2D hex- ing the Workshop on Topological Defects in Non-
agonal lattice which exists near near the bifurcation of nonEquilibrium Systems and Condensed Matter. I.S.A. and
trivial uniform solutions ate=32 [14]. We anticipate that L.S.T. acknowledge support from the U.S. DOE under
propagation of the hexagonal structure into the uniform stat&rants Nos. W-31-109-ENG-38, DE-FG03-95ER14516, DE-
will exhibit the same features of stick-and-slip motion asFG03-96ER14592 and NSF, STCS No. DMR91-20000.
described above, and can be studied by similar methods. F&rM.P. acknowledges the support by the Technion V.P.R.
the SH equatiorfl) at e>2, hexagonal lattices coexist with Fund and by the Minerva Center for Nonlinear Physics of
roll patterns which have lower energy, so the front propagaComplex Systems.
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